Three-Dimensional Vector Radiative Transfer in a Semi-Infinite, Rayleigh Scattering Medium Exposed to Spatially Varying Polarized Radiation
Alternative Title
Generalized reflection matrix
Abstract
Three-dimensional vector radiative transfer in a semi-infinite medium exposed to spatially varying, polarized radiation is studied. The problem is to determine the generalized reflection matrix for a multiple scattering medium characterized by a 4 × 4 scattering matrix. A double integral transform is used to convert the three-dimensional vector radiative transfer equation to a one-dimensional form, and a modified Ambarzumian's method is then applied to derive a nonlinear integral equation for the generalized reflection matrix. The spatially varying backscattered radiation for an arbitrarily polarized incident beam can be found from the generalized reflection matrix. For Rayleigh scattering and normal incidence and emergence, the generalized reflection matrix is shown to have five non-zero elements. Benchmark results for these five elements are presented and compared to asymptotic results. When the incident radiation is polarized, the vector approach used in this study correctly predicts three-dimensional behavior, while the scalar approach does not. When the incident radiation is unpolarized, both the vector and scalar approaches predict a two-dimensional distribution of the intensity, but the error in the scalar prediction can be as high as 20%. © 2002 Elsevier Science Ltd. All rights reserved.
Recommended Citation
D. W. Mueller and A. L. Crosbie, "Three-Dimensional Vector Radiative Transfer in a Semi-Infinite, Rayleigh Scattering Medium Exposed to Spatially Varying Polarized Radiation," Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, Jan 2002.
The definitive version is available at https://doi.org/10.1016/S0022-4073(02)00008-0
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0022-4073
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2002 Elsevier, All rights reserved.
Publication Date
01 Jan 2002