On the Elasto-Plastic Stress Concentration At a Circular Hole in an Anisotropic Sheet

Abstract

The classical problem of determining the stress concentration factor at a circular hole embedded in an infinite sheet subjected to remote uniform tension is investigated. A finite strain elasto-plastic deformation theory based on Hill's new anisotropic flow theory [7] is used. It is shown that the governing field equations can be reduced to a single first order differential equation from which the stress concentration factor is obtained by a standard numerical method. The solution covers the entire elasto-plastic range and is valid for any strain hardening function. Comparison with experimental results, for a few materials, shows good agreement. With a pure power hardening law and within the framework of small strain plasticity, our results agree with those obtained from a more general solution discovered by Budiansky [8]. © 1982 Springer Verlag.

Department(s)

Mechanical and Aerospace Engineering

International Standard Serial Number (ISSN)

0001-5970

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1982 Springer Verlag, All rights reserved.

Publication Date

01 Jan 1982

Share

 
COinS