Machining Force Control Including Static, Nonlinear Effects
Editor(s)
Stelson, K. and Oba, F.
Abstract
Regulating machining forces provides significant economic benefits by increasing productivity and improving part quality. The traditional machining force control approach employs linear, model-based techniques, assuming the machining force of interest is proportional to the feed and the depth-of-cut. However, the force-feed and force-depth relationships are nonlinear. Adaptive control techniques augment the traditional approach to ensure controller stability in the presence of these nonlinearities. Approaches employing linearization and transformation techniques have been developed which approximately account for the static, nonlinear effects. This paper demonstrates through simulation and experimental results that ignoring these nonlinearities reduces the performance of common machining force controllers. A model-based methodology is introduced which exactly accounts for the static, nonlinear effects. A change of variable accounts for the force-feed effect and the controller gains are adjusted to account for the force-depth effect. The proposed approach preserves the ease of design of linear, model-based techniques while ensuring controller performance specifications are met. The proposed approach is compared to the traditional, linearization, and log transform approaches via simulations and experiments and the advantages of this new technique are demonstrated.
Recommended Citation
R. G. Landers and A. G. Ulsoy, "Machining Force Control Including Static, Nonlinear Effects," Proceedings of the Japan/USA Symposium on flexible Automation, American Society of Mechanical Engineers (ASME), Jan 1996.
Meeting Name
1996 Japan-USA Symposium on Flexible Automation
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Adaptive Control Systems; Computer Simulation; Control Equipment; Control Nonlinearities; Force Control; Linearization; Mathematical Models; Mathematical Transformations; System Stability
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1996 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 1996