Laminar Mixed Convection Adjacent to Three-Dimensional Backward-Facing Step

Abstract

Simulations of three-dimensional laminar buoyancy-assisting mixed convection adjacent to a backward-facing step in a vertical rectangular duct are presented to demonstrate the influence of Grashof number on the distributions of the Nusselt number, and the reverse flow regions that develop adjacent to the duct's walls. The Reynolds number, and duct's geometry are kept constant: heat flux at the wall downstream from the step is kept uniform but its magnitude varied to cover a Grashof number range of 0-4000; all the other walls in the duct are kept at adiabatic condition; and the flow, upstream of the step, is treated as fully developed and isothermal. Increasing the Grashof number results in increasing the Nusselt number; the size of the secondary recirculation flow region adjacent to the stepped wall; the size of the reverse flow region adjacent to the sidewall and the flat wall; and the spanwise flow from the sidewall toward the center of the duct. On the other hand, the size of the primary recirculation flow region adjacent to the stepped wall decreases and detaches partially from the heated stepped wall as the Grashof number increases. Details are presented and discussed.

Department(s)

Mechanical and Aerospace Engineering

Sponsor(s)

National Science Foundation (U.S.)

Keywords and Phrases

Monte Carlo; Conduction; Cylinder; Heat Transfer; Space

International Standard Serial Number (ISSN)

0022-1481

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2002 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Feb 2002

Share

 
COinS