Finite Element Modeling of Acoustics Using Higher Order Elements. Part I: Nonuniform Duct Propagation
Abstract
Cubic serendipity elements have been implemented into a nonuniform duct model of acoustic propagation in a moving medium. This model uses a convective potential formulation derived from the inviscid linearized mass and momentum equations. the model requires post-processing to calculate acoustic pressure. These elements outperform the quadratic serendipity elements in terms of computational efficiency based on visual observations and error norm analysis of acoustic pressure. CPU time reduction of up to 40% has been observed without sacrificing accuracy. Any penalty in numerical accuracy incurred by using serendipity elements rather than Lagrangian elements is far outweighed by the gains in dimensionality. the computational gains for calculation of acoustic potential are considerably less. Analytical expressions for the modal and convective effects on the propagating wavelength have been formulated and compared to numerical results. Preliminary assessment of alternative finite element approaches tomodel the convective potential formulation has been conducted. Stabilization and wave approximation methods have been implemented to solve simple one-dimensional problems.
Recommended Citation
E. Listerud and W. Eversman, "Finite Element Modeling of Acoustics Using Higher Order Elements. Part I: Nonuniform Duct Propagation," Journal of Computational Acoustics, World Scientific Publishing, Jan 2004.
The definitive version is available at https://doi.org/10.1142/S0218396X0400233X
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Acoustic Finite Element Modeling; Duct Acoustics; Duct Propagation
International Standard Serial Number (ISSN)
0218-396X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 World Scientific Publishing, All rights reserved.
Publication Date
01 Jan 2004