Enhancement of Buckling Loads of Laminated Plates Using Piezoelectric Devices
Abstract
A finite element model is developed for the active buckling control of laminated composite plates using piezoelectric materials. The finite element model is based on the shear deformation plate theory in conjunction with linear piezoelectric theory. The piezoelectric sensors and actuators can be surface bonded or embedded and can be either continuous or segmented. The model does not introduce voltage as an additional degree of freedom and takes into account the mass and stiffness of the piezoelectric patches. The dynamic buckling behavior of the laminated plate subjected to a linearly-increasing uniaxial compressive load is investigated. The sensor output is used to determine the input to the actuator using a proportional control algorithm. The forces induced by the piezoelectric actuators under the applied voltage fields enhance the critical buckling load. Finite element solutions are presented for composite plates with clamped boundary conditions and the effectiveness of piezoelectric materials in enhancing the buckling loads is demonstrated.
Recommended Citation
K. Chandrashekhara and K. Bhatia, "Enhancement of Buckling Loads of Laminated Plates Using Piezoelectric Devices," Proceedings of the 1993 ASME Winter Annual Meeting, New orleans LA, American Society of Mechanical Engineers (ASME), Jan 1993.
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Composite Materials; Structures; Applied Mechanics
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1993 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 1993