Embedded and Surface Flaws in Unidirectional Composites

Abstract

Internal and surface flaws are sometimes formed in fiber reinforced composites during processing and in service. These flaws (cracks) may grow under applied thermo-mechanical loads and result in an ultimate failure of the composite. This paper deals with a particular class of unidirectional composites whose matrix and fiber have comparable stiffnesses; stiff matrix composites. The use of classical shear lag theory for the analysis of such composites is not justifiable because the load carrying capacity of the matrix cannot be neglected. A 3-D consistent shear lag model is developed for the stress analysis of a finite 3-D composite containing aligned fibers subjected to a uniform tensile load along the fiber direction. The governing equations consist of a set of ordinary coupled differential-difference equations in which the axial and transverse displacements are the unknowns. The results are presented for various embedded and surface flaw geometries. The displacement and stress fields are obtained to predict the mode of crack propagation based on a point stress failure criterion. © 1991.

Department(s)

Mechanical and Aerospace Engineering

International Standard Serial Number (ISSN)

0045-7949

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1991 Elsevier, All rights reserved.

Publication Date

01 Jan 1991

Share

 
COinS