Effect of Internal Material Damping on the Dynamics of a Slider-Crank Mechanism
Abstract
A study of the effect of internal material damping on the dynamic response behavior of a slider-crank mechanism is presented in this paper. In developing the governing equations of motion, an assumption of a linear viscoelastic model for the connecting rod is made. A perturbation approach is utilized for reducing these coupled axial and transverse nonlinear equations to a nonhomogeneous damped Mathieu equation, describing the transverse vibration of the connecting rod. Both steady-state and transient solutions are determined and compared to those obtained from the use of an undamped connecting rod. It is demonstrated that the viscoelastic material damping can have significant influence, both favorable and adverse, in attempting to attenuate the steady-state and transient response of the connecting rod. The response is computed for several combinations of the excitation parameter and the frequency ratio. The stability of the transverse vibration of the connecting rod is also investigated in this paper.
Recommended Citation
M. L. Badlani and A. Midha, "Effect of Internal Material Damping on the Dynamics of a Slider-Crank Mechanism," Journal of Mechanical Design, American Society of Mechanical Engineers (ASME), Jan 1983.
The definitive version is available at https://doi.org/10.1115/1.3267381
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Dynamics (Mechanics); Damping; Mechanisms; Steady State; Vibration; Dynamic Response; Equations; Nonlinear Equations; Stability; Viscoelastic Materials
International Standard Serial Number (ISSN)
1050-0472
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1983 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 1983