Determination of Vibrational Energy Levels and Transition Dipole Moments of CO₂ Molecules by Density Functional Theory

Abstract

An efficient method is presented to calculate the intra-molecular potential energies and electrical dipole moments of CO2 molecules at the electronic ground state by solving the Kohn-Sham (KS) equation for a total of 101 992 nuclear configurations. The projector-augmented wave (PAW) exchange-correlation potential functionals and plane wave (PW) basis functions were used in solving the KS equation. The calculated intra-molecular potential function was then included in the pure vibrational Schrödinger equation to determine the vibrational energy eigen values and eigen functions. The vibrational wave functions combined with the calculated dipole moment function were used to determine the transition dipole moments. The calculated results were compared with the experimental data.

Department(s)

Mechanical and Aerospace Engineering

Sponsor(s)

United States. Department of the Navy

Keywords and Phrases

CO2; DFT; PW Basis Functions; Transition Dipole Moment

International Standard Serial Number (ISSN)

0022-2852

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2008 Elsevier, All rights reserved.

Publication Date

01 Dec 2008

Share

 
COinS