Abstract
We examine the dynamics of stimulated Raman scattering in designed high-Q/Vm silicon photonic band gap nanocavities through the coupled-mode theory framework towards optically-pumped silicon lasing. The interplay of other X(3) effects such as two-photon absorption and optical Kerr, related free-carrier dynamics, thermal effects, as well as linear losses such as cavity radiation and linear material absorption are included and investigated numerically. Our results clarify the relative contributions and evolution of the mechanisms, and demonstrate the lasing and shutdown thresholds. Our studies illustrate the conditions for continuous-wave and pulsed highly-efficient Raman frequency conversion for practical realization in monolithic silicon high-Q/Vm photonic band gap defect cavities.
Recommended Citation
X. Yang and C. W. Wong, "Coupled-Mode Theory for Stimulated Raman Scattering in High-Q/Vm Silicon Photonic Band Gap Defect Cavity Lasers," Optics Express, vol. 15, no. 8, pp. 4763 - 4780, Optical Society of America, Apr 2007.
The definitive version is available at https://doi.org/10.1364/OE.15.004763
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
1094-4087
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Optical Society of America, All rights reserved.
Publication Date
16 Apr 2007