Buoyancy Effects on Forced Convection Along a Vertical Cylinder
Abstract
The effects of buoyancy forces on the longitudinal forced convective flow and heat transfer along an isothermal vertical cylinder are studied analytically. This problem does not admit similarity solutions, the nonsimilarity arising both from the transverse curvature ξ = (4/r0 ) (vx/u∞)1/2 of the cylindrical surface and from the buoyancy effect expressible as Ω = Grx /Reₓ² where Grx and Rex are, respectively, the Grashof and Reynolds numbers. The governing equations are solved by the local nonsimilarity method in which all the nonsimilar terms are retained in the conservation equations and only in the derived subsidiary equations are terms selectively neglected according to the two-equation or three-equation model. Numerical results for the velocity and temperature profiles, wall shear stress, and surface heat transfer for the case of assisting flow are presented for gases having a Prandtl number of 0.7 over a wide range of values of ξ from 0 (i.e., a flat plate) to 4.0 and Ω from 0 (i.e., pure forced convection) to 2.0. It is found that the wall shear and surface heat transfer rate increase with increasing buoyancy force and increasing curvature of the surface.
Recommended Citation
T. S. Chen and A. Mucoglu, "Buoyancy Effects on Forced Convection Along a Vertical Cylinder," Journal of Heat Transfer, American Society of Mechanical Engineers (ASME), Jan 1975.
The definitive version is available at https://doi.org/10.1115/1.3450341
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Forced Convection; Cylinders; Equations; Buoyancy; Heat Transfer; Force; Flow (Dynamics); Shear (Mechanics); Gases; Reynolds Number
International Standard Serial Number (ISSN)
0022-1481
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1975 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 1975