Boron Nitride Hall-Effect Thruster Channel Surface Properties Investigation
Abstract
Surface properties of Hall-effect thruster channel walls play an important role in the performance and lifetime of the device. Physical models of near-wall effects are beginning to be incorporated into thruster simulations, and these models must account for evolution of channel surface properties due to thruster operation. Results from this study show differences in boron nitride channel surface properties from beginning-of-life and after 100's of hours of operation. Two worn thruster channels of different boron nitride grades are compared with their corresponding pristine and shadow-shielded samples. Pristine HP grade boron nitride surface roughness is 9000±700 Å, while the worn sample is 110,900±8900 Å at the exit plane. Pristine M26 grade boron nitride surface roughness is 18400±1400 Å, while the worn sample is 52300±4200 Å at the exit plane. Comparison of pristine and worn channel surfaces also show surface properties are dependent on axial position within the channel. For example, surface roughness increases by as much as a factor of 5.4 and surface atom fraction of carbon and metallic atoms decreases by a factor of 2.9 from anode to exit plane. Macroscopic striations at the exit plane angled 10o to 30 o from axial are found to be related to the electron gyroradius and give rise to anisotropic surface roughness. Smoothing of ceramic grains at the microscopic level is also evident.
Recommended Citation
D. G. Zidar and J. L. Rovey, "Boron Nitride Hall-Effect Thruster Channel Surface Properties Investigation," Joint Propulsion Conferences, American Institute of Aeronautics and Astronautics (AIAA), Jan 2011.
The definitive version is available at https://doi.org/10.2514/6.2011-5993
Meeting Name
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conferences & Exhibit
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Anisotropic Surfaces; Axial Positions; Beginning of Lives; Boron Nitride Surfaces; Channel Surface; Hall Effect Thrusters; Microscopic Levels; Near-Wall Effects
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2011 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.
Publication Date
01 Jan 2011