A Numerical Comparison Between the Multiple-Scales and Finite-Element Solution for Sound Propagation in Lined Flow Ducts

Abstract

An explicit, analytical, multiple-scales solution for modal sound transmission through slowly varying ducts with mean flow and acoustic lining is tested against a numerical finite-element solution solving the same potential flow equations. The test geometry taken is representative of a high-bypass turbofan aircraft engine, with typical Mach numbers of 0.5-0.7, circumferential mode numbers m of 10-40, dimensionless wavenumbers of 10-50, and both hard and acoustically treated inlet walls of impedance Z = 2 - i. Of special interest is the presence of the spinner, which incorporates a geometrical complexity which could previously only be handled by fully numerical solutions. The results for predicted power attenuation loss show in general a very good agreement. The results for iso-pressure contour plots compare quite well in the cases where scattering into many higher radial modes can occur easily (high frequency, low angular mode), and again a very good agreement in the other cases.

Department(s)

Mechanical and Aerospace Engineering

International Standard Serial Number (ISSN)

0022-1120

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2001 Cambridge University Press, All rights reserved.

Publication Date

01 Jan 2001

Share

 
COinS