Two-Dimensional Radiative Equilibrium: A Semi-Infinite Medium Subjected to Cosine Varying Radiation
Abstract
Exact numerical solutions are presented for the radiative flux and emissive power at the boundary of a semi-infinite, two-dimensional, planar, absorbing-emitting, gray medium subjected to cosine-varying collimated and cosine-varying diffuse boundary radiation, respectively. The emissive power at the boundary due to the cosine varying collimated boundary condition is shown to be a generalized H-function which is analogous to the H-function of Chandrasekhar. The nonlinear integral equation of the Chandrasekhar type is developed for the generalized H-function and solved for a wide range of the parameters. The emissive power and radiative flux at the boundary for the cosine-varying diffuse model, as well as the radiative flux for the cosine-varying collimated model, are expressed in terms of the generalized H-function and solved numerically. © 1973.
Recommended Citation
W. F. Breig and A. L. Crosbie, "Two-Dimensional Radiative Equilibrium: A Semi-Infinite Medium Subjected to Cosine Varying Radiation," Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, Jan 1973.
The definitive version is available at https://doi.org/10.1016/0022-4073(73)90050-2
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0022-4073
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1973 Elsevier, All rights reserved.
Publication Date
01 Jan 1973