Spacecraft Formation Flight About Libration Points
Abstract
With the development of technologies that make Distributed Space Systems (DSS) a realistic option for incorporation into mission design, many new mission concepts have been proposed and will be proposed in the future which make use of this technology. Much of the research accomplished in the area of spacecraft formation flight has been applied to missions in geocentric orbits. Less attention, however, has been devoted to the application of DSS technologies to missions near libration points. Many of the features that make geocentric DSS architectures desirable are equally valid near libration points, such as increased sensor resolution, lower cost, and simplified development of smaller individual spacecraft. While the dynamics of a single spacecraft orbiting about a libration point are well known at this time, the relative dynamics of a formation of spacecraft at such a location has not yet received much study. One interesting and current challenge in the utilization of formation flying spacecraft is maintaining formation accuracy during both passive and observational modes of operation, with different modes requiring different levels of accuracy. The research described in this paper focuses on the development and analysis of discrete maneuvering techniques for maintaining a two satellite formation within required error tolerances for a given operational mode. In particular, formation sizes and control tolerances are sought for which impulsive maneuvering becomes a practical option.
Recommended Citation
B. A. Carlson et al., "Spacecraft Formation Flight About Libration Points," Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit 2004 (2004: Aug. 16-19, Providence, RI), American Institute of Aeronautics and Astronautics (AIAA), Aug 2004.
Meeting Name
AIAA/AAS Astrodynamics Specialist Conference and Exhibit 2004 (2004: Aug. 16-19, Providence, RI)
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Distributed Space Systems (DSS); Libration Points; Missions
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.
Publication Date
19 Aug 2004