Reliability-Based Optimal Design of a Bistable Compliant Mechanism
Abstract
Compliant mechanisms obtain at least some of their motion from the deflection of their flexible members. Advantages of such mechanisms include the reduction of manufacturing and assembly cost and time. Bistable mechanisms are particularly useful in applications where two stable equilibrium positions are required, such as switches, gates, and closures. Fatigue is a major concern in many compliant mechanisms due to the cyclic stresses induced on the flexible members. In this paper, a method for the probabilistic design of a bistable compliant slider-crank mechanism is proposed. Link lengths, material properties, and cross-section dimensions are taken as random variables. Probabilistic constraints on the maximum and minimum required input torque, location of stable equilibrium position, and overall size are included. The objective function is the maximization of the mechanism reliability in fatigue. Several design studies are performed to gain further insight into the nature of the problem.
Recommended Citation
L. L. Howell et al., "Reliability-Based Optimal Design of a Bistable Compliant Mechanism," Journal of Mechanical Design, American Society of Mechanical Engineers (ASME), Jan 1994.
The definitive version is available at https://doi.org/10.1115/1.2919495
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Reliability; Design; Compliant Mechanisms; Mechanisms; Equilibrium (Physics); Fatigue; Manufacturing; Torque; Motion; Dimensions
International Standard Serial Number (ISSN)
1050-0472
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1994 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 1994