Reliability-Based Optimal Design of a Bistable Compliant Mechanism

Abstract

Compliant mechanisms obtain at least some of their motion from the deflection of their flexible members. Advantages of such mechanisms include the reduction of manufacturing and assembly cost and time. Bistable mechanisms are particularly useful in applications where two stable equilibrium positions are required, such as switches, gates, and closures. Fatigue is a major concern in many compliant mechanisms due to the cyclic stresses induced on the flexible members. In this paper, a method for the probabilistic design of a bistable compliant slider-crank mechanism is proposed. Link lengths, material properties, and cross-section dimensions are taken as random variables. Probabilistic constraints on the maximum and minimum required input torque, location of stable equilibrium position, and overall size are included. The objective function is the maximization of the mechanism reliability in fatigue. Several design studies are performed to gain further insight into the nature of the problem.

Department(s)

Mechanical and Aerospace Engineering

Keywords and Phrases

Reliability; Design; Compliant Mechanisms; Mechanisms; Equilibrium (Physics); Fatigue; Manufacturing; Torque; Motion; Dimensions

International Standard Serial Number (ISSN)

1050-0472

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1994 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 1994

Share

 
COinS