Position and Attitude Control of Deep-Space Spacecraft Formation Flying Via Virtual Structure and Θ-D Technique
Abstract
Control of deep-space spacecraft formation flying is investigated in this paper using the virtual structure approach and the theta-D suboptimal control technique. The circular restricted three-body problem with the Sun and the Earth as the two primaries is utilized as a framework for study and a two-satellite formation flying scheme is considered. The virtual structure is stationkept in a nominal orbit around the L2 libration point. A maneuver mode of formation flying is then considered. Each spacecraft is required to maneuver to a new position and the formation line of sight is required to rotate to a desired orientation to acquire new science targets. During the rotation, the formation needs to be maintained and each spacecraft's attitude must align with the rotating formation orientation. The basic strategy is based on a “virtual structure” topology. A nonlinear model is developed that describes the relative formation dynamics. This highly nonlinear position and attitude control problem is solved by employing a recently developed nonlinear control approach, called the theta-D technique. This method is based on an approximate solution to the Hamilton-Jacobi-Bellman equation and yields a closed-form suboptimal feedback solution. The controller is designed such that the relative position error of the formation is maintained within 1 cm accuracy.
Recommended Citation
M. Xin et al., "Position and Attitude Control of Deep-Space Spacecraft Formation Flying Via Virtual Structure and Θ-D Technique," Journal of Dynamic Systems, Measurement, and Control, American Society of Mechanical Engineers (ASME), Jan 2007.
The definitive version is available at https://doi.org/10.1115/1.2764509
Department(s)
Mechanical and Aerospace Engineering
Sponsor(s)
Goddard Space Flight Center
Keywords and Phrases
Spacecraft; Deep space; Space vehicles
International Standard Serial Number (ISSN)
0022-0434
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2007 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 2007