Parametric Study on the Fuel Film Breakup of a Cold Start PFI Engine
Abstract
In order to provide more insight on improving the cold start fuel atomization for reducing unburned hydrocarbon emissions, the liquid fuel film breakup phenomenon in the intake valve/port region was investigated in depth for port-fuel-injected engines. Experiments were conducted using high-speed high-resolution imaging techniques to visualize the liquid film atomization and airflow patterns in an axisymmetric steady flow apparatus. The impact of valve/port seat geometry, surface roughness, and fuel properties on airflow separation and fuel film breakup were determined through a parametric study. CFD simulations were also performed with FLUENT to help understand the airflow behavior inside the intake port and valve gap region and its potential impact on fuel film atomization.
Recommended Citation
Y. Wang et al., "Parametric Study on the Fuel Film Breakup of a Cold Start PFI Engine," Experiments in Fluids, Springer Verlag, Jan 2004.
The definitive version is available at https://doi.org/10.1007/s00348-004-0827-x
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Fuel Atomization; Hydrocarbon Emissions; Liquid Fuel Film
International Standard Serial Number (ISSN)
0723-4864
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 Springer Verlag, All rights reserved.
Publication Date
01 Jan 2004