Natural Convection on Horizontal, Inclined, and Vertical Plates with Variable Surface Temperature or Heat Flux
Abstract
An analysis is performed to study the flow and heat transfer characteristics of laminar free convection in boundary layer flows from horizontal, inclined, and vertical flat plates in which the wall temperature T w(x) or the surface heat flux q w(x) varies as the power of the axial coordinate in the form T w(x) = T ∞ + ax n or q w = bx m. The governing equations are first cast into a dimensionless form by a nonsimilar transformation and the resulting equations are then solved by a finite-difference scheme. Numerical results for fluids with Prandtl numbers of 0.7 and 7 are presented for three representative exponent values under each of the nonuniform surface heating conditions. It has been found that both the local wall shear stress and the local surface heat transfer rate increase as the angle of inclination from the horizontal γ increases or as the local Grashof number increases. An increase in the value of the exponent n or m enhances the surface heat transfer rate, but it causes a decrease in the wall shear stress. Correlation equations for the local and average Nusselt numbers are obtained for the special cases of uniform wall temperature (UWT) and uniform surface heat flux (UHF). Comparisons are also made of the local Nusselt numbers between the present results and available experimental data for the UHF case, and a good agreement is found to exist between the two. © 1986.
Recommended Citation
T. S. Chen et al., "Natural Convection on Horizontal, Inclined, and Vertical Plates with Variable Surface Temperature or Heat Flux," International Journal of Heat and Mass Transfer, Elsevier, Jan 1986.
The definitive version is available at https://doi.org/10.1016/0017-9310(86)90061-X
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0017-9310
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1986 Elsevier, All rights reserved.
Publication Date
01 Jan 1986