Modeling of Pressureless Constant Heating Rate Sintering of Ceramic Matrix Composites

Abstract

A viscoelastic finite-element model is developed for analyzing the pressureless constant-heating-rate sintering of particulate-or whisker-reinforced ceramic-matrix composites. The sintering potential is assumed to be a function of heating rate, temperature and relative density and is obtained from experimental data on the densification of an identical unconstrained (unreinforced) matrix sample. The reinforcement is modelled as a spherical or ellipsoidal unsinterable inclusion and the matrix as a compressible viscoelastic material. The results show that inclusions result in reduced sinterability and cause a heterogeneous density distribution, the heterogeneity of density, mechanical properties and residual stresses being affected by the shape of the inclusions. The initial homogeneity (or lack of it) of the green compact has been also shown to affect the final density. © 1995.

Department(s)

Mechanical and Aerospace Engineering

International Standard Serial Number (ISSN)

0924-0136

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1995 Elsevier, All rights reserved.

Publication Date

01 Jan 1995

Share

 
COinS