Heat Transfer and Fluid Flow in a Partially or Fully Penetrated Weld Pool in Gas Tungsten Arc Welding
Abstract
In this study, fluid flow driven by a combination of electromagnetic force, buoyancy force, arc drag force, and surface tension gradient is numerically analyzed for a partially or fully penetrated weld pool in stationary gas tungsten arc welding (GTAW). Irregular shape of the weld pool and the moving liquid-solid interface is handled by a boundary-fitted-coordinates technique. Surface tension on the top and the bottom free surfaces of the weld pool is found to play a critical role in determining the flow pattern in the weld pool. The calculated GTA weld bead geometry compares favorably with experimental results. © 2000 Elsevier Science Ltd. All rights reserved.In this study, fluid flow driven by a combination of electromagnetic force, buoyancy force, arc drag force, and surface tension gradient is numerically analyzed for a partially or fully penetrated weld pool in stationary gas tungsten arc welding (GTAW). Irregular shape of the weld pool and the moving liquid-solid interface is handled by a boundary-fitted-coordinates technique. Surface tension on the top and the bottom free surfaces of the weld pool is found to play a critical role in determining the flow pattern in the weld pool. The calculated GTA weld bead geometry compares favorably with experimental results.
Recommended Citation
H. G. Fan et al., "Heat Transfer and Fluid Flow in a Partially or Fully Penetrated Weld Pool in Gas Tungsten Arc Welding," International Journal of Heat and Mass Transfer, Elsevier, Jan 2000.
The definitive version is available at https://doi.org/10.1016/S0017-9310(00)00094-6
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0017-9310
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2000 Elsevier, All rights reserved.
Publication Date
01 Jan 2000