Determination of Equilibrium Wire-Feed-Speeds for Stable Gas Metal Arc Welding

Abstract

In gas metal arc welding (GMAW), a consumable electrode wire is fed normally at a pre-determined constant speed in order to achieve a stable welding process for given welding conditions. In this article, a comprehensive mathematical model for GMAW was employed to study the interplay among electrode melting; the formation, detachment, and transfer of droplets; and the plasma arc under various welding conditions. It is found that a stable GMAW process can be obtained through a balance between the wirefeed- speed (WFS) and the dynamic electrode melting rate due to the transient behavior of plasma arc. Otherwise, an unstable welding process including electrode burned-back or stick-onto the weld pool could occur. The model-predicted equilibrium WFS varying with welding current and feeding-wire diameter is in good agreement with the published empirical results obtained through a trial-and-error procedure. © 2012 Elsevier Ltd. All rights reserved.

Department(s)

Mechanical and Aerospace Engineering

Keywords and Phrases

Electrode Melting; GMAW; Plasma Arc; Wire-Feed-Speed

International Standard Serial Number (ISSN)

0017-9310

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 Elsevier, All rights reserved.

Publication Date

01 Jan 2012

Share

 
COinS