Experimental Model Determination for Neurocontrol of a Thermal Conduction System
Abstract
Recently a synthesis methodology for the infinite time optimal neurocontrollers for partial differential equations systems in the framework of adaptive-critic design has been developed. The adaptive-critic approach is applied to a thermal conduction system. The experimental setup representing a one-dimensional heat conduction problem developed by matching the experimental and simulation results using a tridiagonal-matrix algorithm is presented. The discrete domain forms of the state, the costate and the optimal control equations are derived using the distributed parameter model of the system. The synthesis is introduced of an adaptive-critic-based infinite time optimal neurocontroller for online temperature profile control. The representative states of the system for training the networks was generated using Fourier series-based smooth states profile algorithm. Finally, the action network is implemented for temperature profile control of the experimental setup.
Recommended Citation
P. Prabhat et al., "Experimental Model Determination for Neurocontrol of a Thermal Conduction System," Journal of Thermophysics and Heat Transfer, American Institute of Aeronautics and Astronautics (AIAA), Oct 2003.
The definitive version is available at https://doi.org/10.2514/2.6806
Department(s)
Mechanical and Aerospace Engineering
Keywords and Phrases
Algorithms; Distributed Parameter Control Systems; Identification (Control Systems); Mathematical Models; One Dimensional; Optimal Control Systems; Partial Differential Equations; Temperature Control; Thermal Diffusion
International Standard Serial Number (ISSN)
0887-8722
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2003 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.
Publication Date
01 Oct 2003