Methods for the Design of Energy Efficient High Speed Aerospace Vehicles

Abstract

This paper continues development of the fundamental analytical science, methodology and tools required for the analysis, design, and optimisation of high speed aerospace vehicles in terms of the efficient use of on-board energy. Specifically, it presents the complete second-law characterisation and related system-level energy management effectiveness for high-speed vehicles (coupling both aerodynamic and propulsive subsystems). Modelling of the fluid dynamics utilises high-level (multi-dimensional) flow-fields representative of generic configurations of interest. Capability has been recently developed which allows detailed second-law performance audits in terms of the 'common currency' of entropy generation for high-speed vehicles (involving complete synthesis of both internal and external flow-fields, i.e. both aerodynamic and propulsive sub-systems). This capability is now extended to encompass and utilise multi-dimensional flow-fields generated by computational fluid dynamics solvers, including Navier-Stokes solvers. Furthermore, the methodology is shown in this paper to provide insight and fundamental direction for management of onboard energy ('price paid') for maximum performance missions.

Department(s)

Mechanical and Aerospace Engineering

Keywords and Phrases

Aerospace Vehicles; Product Design; Aerospace engineering

International Standard Serial Number (ISSN)

0001-9240

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2007 Royal Aeronautical Society, All rights reserved.

Publication Date

01 Jan 2007

Share

 
COinS