Fractal and Projected Structure Properties of Soot Aggregates
Abstract
The structure of soot aggregates was investigated, emphasizing the fractal properties as well as the relationships between the properties of actual and projected soot images. This information was developed by considering numerically simulated soot aggregates based on cluster-cluster aggregation as well as measured soot aggregates based on thermophoretic sampling and analysis by transmission electron microscopy (TEM) of soot for a variety of fuels (acetylene, propylene, ethylene, and propane) and both laminar and turbulent diffusion flame conditions. It was found that soot aggregate fractal properties are relatively independent of fuel type and flame condition, yielding a fractal dimension of 1.82 and a fractal prefactor of 8.5, with experimental uncertainties (95% confidence) of 0.08 and 0.5, respectively. Relationships between the actual and projected structure properties of soot, e.g., between the number of primary particles and the projected area and between the radius of gyration of an aggregate and its projected image, also are relatively independent of fuel type and flame condition.
Recommended Citation
Ü. Ö. Köylü et al., "Fractal and Projected Structure Properties of Soot Aggregates," Combustion and Flame, Elsevier, Jan 1995.
The definitive version is available at https://doi.org/10.1016/0010-2180(94)00147-K
Department(s)
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
0010-2180
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1995 Elsevier, All rights reserved.
Publication Date
01 Jan 1995