Determining Optimal Parameters for Stereolithography Processes Via Genetic Algorithm
Abstract
Current part build accuracy of stereolithography processes needs to be improved because part inaccuracy and distortion still limit the processes' application to other areas. This paper focuses on increasing build accuracy by optimally designing the process parameters. The process is modeled and described by a multilayer perceptron neural network. Based on this modeled process, the genetic algorithm searches the optimal process parameters so that optimal conditions yield minimum part build error. In practice, genetic algorithms find near-optimal conditions since they do not guarantee true optimal condition. The nearly optimized process is validated by actually building H-parts and comparing these results with those obtained by the currently used nominal condition.
Recommended Citation
H. S. Cho et al., "Determining Optimal Parameters for Stereolithography Processes Via Genetic Algorithm," Journal of Manufacturing Systems, Elsevier, Jan 2000.
The definitive version is available at https://doi.org/10.1016/S0278-6125(00)88887-1
Department(s)
Mechanical and Aerospace Engineering
Sponsor(s)
Ministry of Commerce Industry & Energy- Korea
Keywords and Phrases
Genetic Algorithm; Neural Network; Process Optimization; Process Parameter; Stereolithography Process
International Standard Serial Number (ISSN)
0278-6125
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2000 Elsevier, All rights reserved.
Publication Date
01 Jan 2000