Low-temperature Densification of Zirconium Diboride Ceramics by Reactive Hot Pressing

Abstract

Zirconium diboride-silicon carbide ceramics with relative densities in excess of 95% were produced by reactive hot pressing (RHP) at temperatures as low as 1650°C. the ZrB2 matrix was formed by reacting elemental zirconium and boron. Attrition milling of the starting powders produced nanosized (<100 nm) Zr particulates that reacted with B below 600°C. the reaction resulted in the formation of nanoscale ZrB2 crystallites that could be densified more than 250°C below the temperatures required for conventional ZrB2 powder. Because of the low-temperature densification, the resulting ZrB2 grain sizes were as small as 0.5±0.30 μm for specimens densified at 1650°C and 1.5±1.2 μm for specimens densified at 1800°C. Vickers hardness, elastic modulus, and flexure strength of fully dense materials produced by RHP were 27, 510, and 800 MPa, respectively.

Department(s)

Materials Science and Engineering

International Standard Serial Number (ISSN)

0002-7820; 1551-2916

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2006 Wiley-Blackwell, All rights reserved.

Publication Date

01 Dec 2006

Share

 
COinS