Experimental and Numerical Analysis of the Friction Drilling Process

Editor(s)

Yao, Y. Lawrence

Abstract

Friction drilling is a nontraditional hole-making process. A rotating conical tool is applied to penetrate a hole and create a bushing in a single step without generating chips. Friction drilling relies on the heat generated from the frictional force between the tool and sheet metal workpiece to soften, penetrate, and deform the work-material into a bushing shape. The mechanical and thermal aspects of friction drilling are studied in this research. Under the constant tool feed rate, the experimentally measured thrust force and torque were analyzed. An infrared camera is applied to measure the temperature of the tool and workpiece. Two models are developed for friction drilling. One is the thermal finite element model to predict the distance of tool travel before the workpiece reaches the 250°C threshold temperature that is detectable by an infrared camera. Another is a force model to predict the thrust force and torque in friction drilling based on the measured temperature, material properties, and estimated area of contact. The results of this study are used to identify research needs and build the foundation for future friction drilling process optimization.

Department(s)

Materials Science and Engineering

Keywords and Phrases

Force; Torque; Friction; Temperature; Thrust; Drilling; Modeling; Travel; Energy; Tribology; Conventional Power & Fuels; Manufacturing & Processing

International Standard Serial Number (ISSN)

1087-1357

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2006 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 2006

Share

 
COinS