Anisotropic Grain Growth and Microstructural Evolution of Dense Mullite Above 1550°C
Editor(s)
Green, David J. and Halloran, John and Johnson, David W. and Klein, Lisa
Abstract
Mullite powder with a nearly stoichiometric composition was hot-pressed at 1550°C to produce an almost fully dense microstructure of fine, nearly uniaxial grains. the grain growth of the dense mullite was investigated during subsequent annealing at temperatures in the range of 1550-1750°C. Grain growth was relatively slow at 1550°C and the microstructure remained nearly equiaxial. Annealing at temperatures above the eutectic temperature (∼1590°C) produced fairly rapid anisotropic grain growth. at 1750°C, the anisotropic grain growth can be divided into two stages. in the first stage, the initial microstructure with an anisometric shape factor of 1.7 evolved rapidly into a microstructure with a shape factor of 2.7, consisting of a significant fraction of highly elongated grains. in the second stage, the microstructure evolved slowly into a system consisting of somewhat “blocky” grains with a shape factor of 2.2. the Al2O3 content of the mullite grains increased slightly and reached an equilibrium value during the first stage of anisotropic grain growth. For the samples annealed at 1750°C, the indentation fracture toughness (2.5 ± 0.2 MPa · m1/2) was almost independent of the anisometric shape factor. the interaction between the indentation cracks and the microstructure showed a predominantly transgranular mode of crack propagation. the data indicate that while a network of highly elongated grains can be developed by the present approach, some further manipulation of the grain boundary chemistry is required for an improvement of the fracture toughness.
Recommended Citation
T. Huang et al., "Anisotropic Grain Growth and Microstructural Evolution of Dense Mullite Above 1550°C," Journal of the American Ceramic Society, Wiley-Blackwell, Jan 2000.
The definitive version is available at https://doi.org/10.1111/j.1151-2916.2000.tb01171.x
Department(s)
Materials Science and Engineering
Keywords and Phrases
Anisotropy; Grain Growth; Mullite
International Standard Serial Number (ISSN)
0002-7820; 1551-2916
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2000 Wiley-Blackwell, All rights reserved.
Publication Date
01 Jan 2000