Abstract

To ensure consistent performance of additively manufactured metal parts, it is advantageous to identify alloys that are robust to process variations. This paper investigates the effect of steel alloy composition on mechanical property robustness in laser-directed energy deposition (L-DED). In situ blending of ultra-high-strength low-alloy steel (UHSLA) and pure iron powders produced 10 compositions containing 10–100 wt.% UHSLA. Samples were deposited using a novel configuration that enabled rapid collection of hardness data. The Vickers hardness sensitivity of each alloy was evaluated with respect to laser power and interlayer delay time. Yield strength (YS) and ultimate tensile strength (UTS) sensitivities of five select alloys were investigated in a subsequent experiment. Microstructure analysis revealed that cooling rate-driven phase fluctuations between lath martensite and upper bainite were a key factor leading to high hardness sensitivity. By keeping the UHSLA content ≤20% or ≥70%, the microstructure transformed primarily to ferrite or martensite, respectively, which generally corresponded to improved robustness. Above 70% UHSLA, the YS sensitivity remained low while the UTS sensitivity increased. This finding, coupled with the observation of auto-tempered martensite at lower cooling rates, may suggest a strong response of the work hardening capability to auto-tempering at higher alloy contents. This work demonstrates a methodology for incorporating robust design into the development of alloys for additive manufacturing.

Department(s)

Materials Science and Engineering

Second Department

Mechanical and Aerospace Engineering

Publication Status

Open Access

Comments

Missouri University of Science and Technology, Grant W911NF-20-2-0251

Keywords and Phrases

alloy design; high-strength low-alloy steel; in situ alloying; laser-directed energy deposition; powder blend; robustness; sensitivity analysis

International Standard Serial Number (ISSN)

2072-666X

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Oct 2024

Share

 
COinS