Solidification Kinetics of Graphite Nodules in Cast Iron and Shrinkage Porosity

Abstract

The shrinkage porosity of castings made from cast iron with spherical graphite (SGI) depends on a combination of intrinsic (density and volume of phases, solidification kinetics) and extrinsic conditions related to casting-mold thermo-mechanical interactions. Precipitation of graphite nodules increases the specific SGI volume, and control of the nucleation rate in solidified castings can be used for improving casting soundness. In this article, the method of structural reconstruction of solidification kinetics was used to link the nucleation rate of graphite nodules to experimentally observed shrinkage porosity in a specially designed test casting. An automated SEM/EDX system was used to determine the "true" two-dimensional graphite nodule distributions in the casting sections. These two-dimensional distributions were converted into the volume particle distribution functions (PDF), and the solidification kinetics were reconstructed by applying inverse simulations. The experiments were performed with variations in inoculation and pouring temperature. The shrinkage porosity was compared to the restored sequence of graphite nodule nucleation in the specific casting volumes. It is shown that the second nucleation wave in low-temperature poured and inoculated SGI eliminated interdendritic microporosity. The suggested method could be used in industry to improve the soundness of SGI castings.

Department(s)

Materials Science and Engineering

Keywords and Phrases

Cast iron; Graphite nodules; Shrinkage porosity; Solidification kinetics

International Standard Serial Number (ISSN)

2163-3193; 1939-5981

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Springer, All rights reserved.

Publication Date

01 Oct 2016

Share

 
COinS