Abstract
GeSbS ridge waveguides have recently been demonstrated as a promising mid - infrared platform for integrated waveguide - based chemical sensing and photodetection. To date, their nonlinear optical properties remain relatively unexplored. In this paper, we characterize the nonlinear optical properties of GeSbS glasses, and show negligible nonlinear losses at 1.55 μm. Using self - phase modulation experiments, we characterize a waveguide nonlinear parameter of 7 W-1/m and nonlinear refractive index of 3.71 x 10-18 m2/W. GeSbS waveguides are used to generate supercontinuum from 1280 nm to 2120 nm at the -30 dB level. The spectrum expands along the red shifted side of the spectrum faster than on the blue shifted side, facilitated by cascaded stimulated Raman scattering arising from the large Raman gain of chalcogenides. Fourier transform infrared spectroscopic measurements show that these glasses are optically transparent up to 25 μm, making them useful for short - wave to long - wave infrared applications in both linear and nonlinear optics.
Recommended Citation
J. W. Choi et al., "Nonlinear Characterization Of GeSbS Chalcogenide Glass Waveguides," Scientific Reports, vol. 6, article no. 39234, Nature Research, Dec 2016.
The definitive version is available at https://doi.org/10.1038/srep39234
Department(s)
Materials Science and Engineering
Publication Status
Open Access
International Standard Serial Number (ISSN)
2045-2322
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
21 Dec 2016
- Citations
- Citation Indexes: 75
- Usage
- Downloads: 16
- Captures
- Readers: 45
Comments
Agency for Science, Technology and Research, Grant None