Abstract

Additive manufacturing of SiC-Sialon refractory with complex geometries was achieved using direct ink writing processes, followed by pressure less sintering under nitrogen. The effects of particle size of SiC powders, solid content of slurries and additives on the rheology, thixotropy and viscoelasticity of ceramic slurries were investigated. The optimal slurry with a high solid content was composed of 81 wt% SiC (3.5 µm+0.65 µm), Al2O3 and SiO2 powders, 0.2 wt% dispersant, and 2.8 wt% binder. Furthermore, the accuracy of the structure of specimens was improved via adjustment of the printing parameters, including nozzle size, extrusion pressure, and layer height. The density and flexural strength of the printed SiC-Sialon refractory sintered at 1600 °C were 2.43 g/cm3 and 85 MPa, respectively. In addition, the printed SiC-Sialon crucible demonstrated excellent corrosion resistance to iron slag. Compared to the printed crucible bottom, the crucible side wall was minimally affected by molten slag.

Department(s)

Materials Science and Engineering

Comments

Natural Science Foundation of Anhui Province, Grant G202204

Keywords and Phrases

3D printing; Complex-shape; Printing parameters; Rheology; SiC-Sialon refractory

International Standard Serial Number (ISSN)

1873-619X; 0955-2219

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Elsevier, All rights reserved.

Publication Date

01 Jan 2023

Share

 
COinS