Abstract
A powder-based bottom-up processing scheme is introduced for the production of ceramic nanocomposites. Internal displacement reactions between solid solution powders and metallic reactants proceeding via gaseous intermediates are utilized to generate nanostructured building blocks for the synthesis of ceramic nanocomposites. Subsequent rapid sintering results in ceramic nanocomposites, whose microstructures are inherited from the building blocks. This processing scheme is demonstrated for the production of titanium carbide nanocomposites featuring up to 28 wt.% intragranular tungsten inclusions derived from titanium-tungsten mixed carbide powders. Heat treatment of mixed carbide powders in evacuated ampoules containing titanium sponge and iodine at 1000°C for 24 h resulted in nanocomposite powders featuring tungsten precipitates within titanium carbide grains that were subsequently consolidated via spark plasma sintering at 1300°C for 10 min to produce titanium carbide/metallic tungsten nanocomposites. Transformation of mixed titanium–tungsten carbide powders to titanium carbide/metallic tungsten nanocomposite powders was analyzed via X-ray diffraction. Electron microscopy observations of microstructures pre- and post- sintering showed that the intragranular character of nanocomposite powders can be retained in sintered ceramic nanocomposites. The building block approach demonstrated in this work represents an improved method to make ceramic nanocomposites with majority intragranular character.
Recommended Citation
R. D. Dempsey et al., "Intragranular Nanocomposite Powders As Building Blocks For Ceramic Nanocomposites," Journal of the American Ceramic Society, Wiley, Jan 2023.
The definitive version is available at https://doi.org/10.1111/jace.19175
Department(s)
Materials Science and Engineering
Publication Status
Full Access
Keywords and Phrases
carbides; nanocomposites; precipitates/precipitation; processing; synthesis
International Standard Serial Number (ISSN)
1551-2916; 0002-7820
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Wiley, All rights reserved.
Publication Date
01 Jan 2023
Comments
Army Research Office, Grant W911NF‐14‐1‐0560