Abstract

A powder-based bottom-up processing scheme is introduced for the production of ceramic nanocomposites. Internal displacement reactions between solid solution powders and metallic reactants proceeding via gaseous intermediates are utilized to generate nanostructured building blocks for the synthesis of ceramic nanocomposites. Subsequent rapid sintering results in ceramic nanocomposites, whose microstructures are inherited from the building blocks. This processing scheme is demonstrated for the production of titanium carbide nanocomposites featuring up to 28 wt.% intragranular tungsten inclusions derived from titanium-tungsten mixed carbide powders. Heat treatment of mixed carbide powders in evacuated ampoules containing titanium sponge and iodine at 1000°C for 24 h resulted in nanocomposite powders featuring tungsten precipitates within titanium carbide grains that were subsequently consolidated via spark plasma sintering at 1300°C for 10 min to produce titanium carbide/metallic tungsten nanocomposites. Transformation of mixed titanium–tungsten carbide powders to titanium carbide/metallic tungsten nanocomposite powders was analyzed via X-ray diffraction. Electron microscopy observations of microstructures pre- and post- sintering showed that the intragranular character of nanocomposite powders can be retained in sintered ceramic nanocomposites. The building block approach demonstrated in this work represents an improved method to make ceramic nanocomposites with majority intragranular character.

Department(s)

Materials Science and Engineering

Publication Status

Full Access

Comments

Army Research Office, Grant W911NF‐14‐1‐0560

Keywords and Phrases

carbides; nanocomposites; precipitates/precipitation; processing; synthesis

International Standard Serial Number (ISSN)

1551-2916; 0002-7820

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Wiley, All rights reserved.

Publication Date

01 Jan 2023

Share

 
COinS