Abstract

The mechanical properties of a (Hf,Mo,Nb,Ta,W,Zr)B2 high-entropy ceramic were measured at room temperature. A two-step synthesis process was utilized to produce the (Hf,Mo,Nb,Ta,W,Zr)B2 ceramics. The process consisted of a boro/carbothermal reduction reaction followed by solid solution formation and densification through spark plasma sintering. Nominally, phase pure (Hf,Mo,Nb,Ta,W,Zr)B2 was sintered to near full density (8.98 g/cm3) at 2000°C. The mean grain size was 6 ± 2 µm with a maximum grain size of 17 µm. Flexural strength was 528 ± 53 MPa, Young's modulus was 520 ± 12 GPa, fracture toughness was 3.9 ± 1.2 MPa·m1/2, and hardness (HV0.2) was 33.1 ± 1.1 GPa. A Griffith-type analysis determined the strength limiting flaw to be the largest grains in the microstructure. This is one of the first reports of a variety of mechanical properties of a six-component high-entropy diboride.

Department(s)

Materials Science and Engineering

Keywords and Phrases

borides; ceramic engineering; mechanical properties

International Standard Serial Number (ISSN)

1744-7402; 1546-542X

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 Wiley, All rights reserved.

Publication Date

01 Jul 2022

Share

 
COinS