Abstract

A dual-phase high-entropy boride (HEB)/carbide (HEC) ceramic with a fine grain size was synthesized by a sequential boro/carbothermal process. In the first step, an Hf–Nb–Ta–Ti–Zr-containing carbide was synthesized by a carbothermal reduction of oxides followed by the reaction of the carbide with B4C and ZrH2 to convert part of the carbide to boride. The resulting composition was ∼29 vol% HEB with an average grain size of ∼1.1 μm. Solid solution formation occurred at the densification temperature of 1900°C resulting in a relative density higher than 99%. The Vickers hardness was 26.5 ± 1.4 GPa. This is the first report of synthesizing dual-phase boride–carbide high-entropy ceramics from Carbo thermally synthesized, HEC powders.

Department(s)

Materials Science and Engineering

Comments

Honeywell Federal Manufacturing and Technologies, Grant DE-NA0002839

Keywords and Phrases

borides; carbides; synthesis; ultrahigh temperature ceramics

International Standard Serial Number (ISSN)

1551-2916; 0002-7820

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 Wiley, All rights reserved.

Publication Date

01 Sep 2022

Share

 
COinS