Optical Characterization of Boron Carbide Powders Synthesized with Varying B-To-C Ratios
Abstract
Boron carbide powders were synthesized from elemental powders and studied using X-ray diffraction (XRD) and UV–visible diffuse reflectance, Raman, and diffuse reflectance IR spectroscopies. Following reaction at 1400°C for 6 h, synthesized powders exhibited possible faulting as suggested by XRD patterns. B3C, B4.3C, and B5C powders contained graphitic carbon whereas the boron carbides with higher B/C ratios contained no residual carbon, suggesting that the carbon rich phase boundary is likely temperature dependent. Analysis by Raman and IR spectroscopy suggested that Raman spectra are influenced by excitation frequency due to resonance. We suggest that measurement of boron carbides with resonant Raman lifts the selection rules to allow measurement of Raman silent modes that are present in the IR spectra. Optical reflectance of the boron carbide powders revealed that the B/C ratio governed the indirect and direct optical band gaps of the faulted powders. B3C and B4.3C powders were light gray in spite of the presence of the carbon, whereas B5C, B6.5C, B10C, and B12C were gray, green, brown, and dark brown, respectively. Increasing carbon content increased the optical indirect band gap from 1.3 eV for B12C to 3.2 eV for B3C, causing the observed color changes.
Recommended Citation
H. J. Brown-Shaklee et al., "Optical Characterization of Boron Carbide Powders Synthesized with Varying B-To-C Ratios," Journal of the American Ceramic Society, vol. 106, no. 3, pp. 1932 - 1944, Wiley, Mar 2023.
The definitive version is available at https://doi.org/10.1111/jace.18898
Department(s)
Materials Science and Engineering
Keywords and Phrases
Boron Carbide; Diffuse Reflectance; Drift Spectroscopy; Optical Band Gap; Raman
International Standard Serial Number (ISSN)
1551-2916; 0002-7820
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Wiley, All rights reserved.
Publication Date
01 Mar 2023
Comments
National Science Foundation, Grant DMR 0906584