Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process
Abstract
The use of gas-atomized powder as the feedstock material for the laser powder bed fusion (LPBF) process is common in the additive manufacturing (AM) community. Although gas-atomization produces powder with high sphericity, its relatively expensive production cost is a downside for application in AM processes. Water atomization of powder may overcome this limitation due to its low cost relative to the gas-atomization process. In this work, gas- and water-atomized 304L stainless steel powders were morphologically characterized through scanning electron microscopy (SEM). The water-atomized powder had a wider particle size distribution and exhibited less sphericity. Measuring powder flowability using the Revolution Powder Analyzer (RPA) indicated that the water-atomized powder had less flowability than the gas-atomized powder. Through examining the mechanical properties of LPBF fabricated parts using tensile tests, the gas-atomized powder had significantly higher yield tensile strength and elongation than the water-atomized powder; however, their ultimate tensile strengths were not significantly different.
Recommended Citation
M. H. Sehhat et al., "Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process," JOM, vol. 74, no. 3, pp. 1088 - 1095, Springer, Mar 2022.
The definitive version is available at https://doi.org/10.1007/s11837-021-05029-7
Department(s)
Materials Science and Engineering
Second Department
Mechanical and Aerospace Engineering
International Standard Serial Number (ISSN)
1543-1851; 1047-4838
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2022 The Minerals, Metals and Materials Society (TMS), All rights reserved.
Publication Date
01 Mar 2022
Comments
This work was funded by Honeywell Federal Manufacturing & Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy.