Abstract

In this research, a novel adaptive controlled fatigue testing machine was designed for bending type high cycle fatigue test. A unique dual gauge section Krouse type mini specimen was designed for simply supported transverse bending. Displacement controlled fatigue tests were implemented using an electromechanical actuator. The variation in the control signal and load observed during the test provides unique insights into realizing the deterioration of the specimen due to fatigue. These analyses were utilized to compare the fatigue performance of wrought and additively manufactured 304L stainless steel. The influence of the build direction on fatigue performance was also investigated by testing specimens with 0, 45, and 90 degrees build direction. These comparisons were carried out at different levels of displacement amplitude.

Meeting Name

30th Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference, SFF 2019 (2019: Aug. 12-14, Austin, TX)

Department(s)

Materials Science and Engineering

Second Department

Mechanical and Aerospace Engineering

Comments

This research was supported by National Science Foundation Grant CMMI-1625736. Part of the work was also funded by the Department of Energy’s Kansas City National Security Campus which is operated and managed by Honeywell Federal Manufacturing Technologies, LLC under contract number DE-NA0002839.

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Publication Date

14 Aug 2019

Share

 
COinS