Multi-Level Modeling of Thermal Behavior of Phase Change Material Incorporated Lightweight Aggregate and Concrete
Abstract
An image-based multi-level modeling method is proposed to estimate the effective bulk thermal conductivity of lightweight aggregate (LWA) impregnated with phase change material (PCM). The pore structure heterogeneity of the LWA and the uneven distribution of the PCM are considered by the model. The microstructure of the LWA is represented at two length scales (micro-level and macro-level), which are analyzed individually using imaging techniques. The reconstruction process is conducted on two-dimensional images to obtain three-dimensional digital representative volume element of the LWA, upon which multi-level numerical modeling of heat conduction is performed to estimate the effective bulk thermal conductivity of the PCM-LWA. The computed thermal conductivity of 0.34 W/(m∙K) is closed to experimental result and compared with estimates based on five traditional analytical methods for the sake of superiority analysis. Finally, the simulated thermal conductivity is used in a concrete level simulation to show its feasibility for modeling the thermal behaviors of PCM-LWA-incorporated concrete mixtures, in which PCM are employed to mitigate the hydration heat and prevent thermal cracking in mass concrete. The scale-up simulation manifests that the PCM-LWA not only reduced the peak temperature in the concrete by 3.18 °C but also changed the temperature distribution and gradient pattern inside the concrete.
Recommended Citation
X. Sun et al., "Multi-Level Modeling of Thermal Behavior of Phase Change Material Incorporated Lightweight Aggregate and Concrete," Cement and Concrete Composites, vol. 122, article no. 104131, Elsevier, Sep 2021.
The definitive version is available at https://doi.org/10.1016/j.cemconcomp.2021.104131
Department(s)
Materials Science and Engineering
Second Department
Civil, Architectural and Environmental Engineering
Research Center/Lab(s)
INSPIRE - University Transportation Center
Keywords and Phrases
Hydration heat; Image-based multi-level modeling; Lightweight aggregate; Phase change materials; Thermal conductivity; Thermal cracking
International Standard Serial Number (ISSN)
0958-9465
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2020 Elsevier, All rights reserved.
Publication Date
01 Sep 2021