Abstract
This paper presents an innovative concept of multifunctional lightweight aggregate, which is produced by loading phase change material (PCM) into the interior of lightweight sand (LWS) and sealing the surface pores using water. The PCM loaded in the LWS functionalizes it as a temperature management agent in concrete, and the water in surface pores enables internal curing. It has been found that the particle shape and pore structure of crushed expanded shale LWS makes it an ideal carrier for PCM, loading sufficient PCM and maintaining better (compared to natural sand) mechanical interlocking. When coupled with the internal curing effect, the LWS yields an interpenetrated interfacial transition zone with the cement paste, leading to a compressive strength comparable to natural sand mortar. The hydration products penetrated into the surface pores also helps stabilizing PCM in the LWS. However, any PCM residuum non-stabilized in LWS tends to compromise the strength. Under an optimized scenario, the LWS-PCM composite aggregate is produced by grading, PCM impregnation, rinsing, and water saturation. A mortar proportioned with this aggregate yields comparable 28-day strength to the reference mortar and a 63% lower autogenous shrinkage (because of internal curing). Furthermore, it shows a 7 ⁰C lower semi-adiabatic temperature rise, delayed appearance of peak temperature and gentled cooling curve. These results indicate that the functional aggregate can effectively mitigate the risk of thermal cracking in early-age mass concrete. In addition, PCM remained in aged concrete has a potential to improve its adaptivity to temperature fluctuations in the service environment.
Recommended Citation
W. Liao et al., "Multifunctional Lightweight Aggregate Containing Phase Change Material and Water for Damage Mitigation of Concrete," ES Materials & Manufacturing, vol. 6, pp. 49 - 61, Engineered Science Publisher LLC, Dec 2019.
The definitive version is available at https://doi.org/10.30919/esmm5f606
Department(s)
Materials Science and Engineering
Second Department
Civil, Architectural and Environmental Engineering
Research Center/Lab(s)
INSPIRE - University Transportation Center
Second Research Center/Lab
Center for Research in Energy and Environment (CREE)
Keywords and Phrases
Phase change material (PCM); Lightweight sand (LWS); Cement mortar; Strength; Shrinkage; Thermal adaptivity; Multifunctional
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Publication Date
01 Dec 2019