Plasma Spheroidization of Vitreloy 106A Bulk Metallic Glass Powder


Inert ground Vitreloy 106A powder was used as the starting material for inductively coupled plasma spheroidization. The processed powders were characterized to determine their morphology, flowability, chemistry, and thermal transitions. Processed powder samples were shown to have a particle size distribution that was consistent with the starting material indicating that no significant agglomeration of particles occurred. The average circularity of the processed powder increased when compared to the starting powder. This resulted in higher apparent and tap densities and the flowability also increased. Fine particles that were high in oxygen and copper were vaporized resulting in tightening of the chemistry distribution. XRD and DSC indicated that the starting powder was fully crystallized while the processed powder had both amorphous and crystalline structures present. Raman spectroscopy was used to detect NiO on the surface of the processed powder particles. Powder characterization indicated that the processed powder had better properties compared to the starting powder when considering flowability, amorphous content, and sphericity.


Materials Science and Engineering


This work was funded by Honeywell Federal Manufacturing & Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy.

Keywords and Phrases

Compressive Strength; Inductively Coupled Plasma; Morphology; Nickel Oxide; Particle Size; Particle Size Analysis, Amorphous Content; Bulk Metallic Glass; Crystalline Structure; Plasma Spheroidization; Powder Characterization; Powder Particles; Starting Powders; Thermal Transitions, Metallic Glass

International Standard Serial Number (ISSN)

1073-5623; 1543-1940

Document Type

Article - Journal

Document Version


File Type





© 2019 The Minerals, Metals & Materials Society and ASM International, All rights reserved.

Publication Date

01 Oct 2019