Abstract
Electronic and structural phenomena at the twin-domain-wall/surface junctions in the ferroelastic materials are analyzed. Carriers accumulation caused by the strain-induced band structure changes originated via the deformation potential mechanism, structural order parameter gradient, rotostriction, and flexoelectric coupling is explored. Approximate analytical results show that inhomogeneous elastic strains, which exist in the vicinity of the twin-domain-wall/surface junctions due to the rotostriction coupling, decrease the local band gap via the deformation potential and flexoelectric coupling mechanisms. This is the direct mechanism of the twin-wall static conductivity in ferroelastics and, by extension, in multiferroics and ferroelectrics. On the other hand, flexoelectric and rotostriction coupling leads to the appearance of the improper polarization and electric fields proportional to the structural order parameter gradient in the vicinity of the twin-domain-wall/surface junctions. The "flexoroto" fields leading to the carrier accumulation are considered as an indirect mechanism of the twin-wall conductivity. Comparison of the direct and indirect mechanisms illustrates a complex range of phenomena directly responsible for domain-wall static conductivity in materials with multiple order parameters.
Recommended Citation
E. A. Eliseev et al., "Conductivity of Twin-Domain-Wall/Surface Junctions in Ferroelastics: Interplay of Deformation Potential, Octahedral Rotations, Improper Ferroelectricity, and Flexoelectric Coupling," Physical Review B - Condensed Matter and Materials Physics, vol. 86, no. 8, American Physical Society (APS), Aug 2012.
The definitive version is available at https://doi.org/10.1103/PhysRevB.86.085416
Department(s)
Materials Science and Engineering
Keywords and Phrases
Harmonic generation; Nonlinear optics; Monoclinic space
International Standard Serial Number (ISSN)
1098-0121; 1550-235X
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2012 American Physical Society (APS), All rights reserved.
Publication Date
01 Aug 2012
Comments
V.G. and L.Q.C. acknowledges NSF-DMR-1210588, DMR-0908718, and DMR-0820404 funds.