A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells

Abstract

Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.

Department(s)

Materials Science and Engineering

Comments

This work was supported by the National Institute of General Medical Studies of the National Institutes of Health (NIH) under award numbers P41GM103533 and R01GM49857; NIH grants R21EB014572, R01CA076287, and R01CA154897; the Washington State Life Sciences Discovery Fund grant 2496490 to the Center for Intracellular Delivery of Biologics; the Defence Threat Reduction Agency; and a grant by the David and Patricia Giuliani Family Foundation. Computational resources were provided by BOINC and supported by the National Science Foundation through awards SCI-0221529, SCI-0438443, SCI-0506411, PHY/0555655, and OCI-0721124.

Keywords and Phrases

BH3 protein; BIM protein; bortezomib; copolymer; cyclophosphamide; cytochrome c; epitope; proline; protein bcl 2; BHRF1 protein; protein bcl 2; unclassified drug; virus protein, animal experiment; animal model; animal tissue; apoptosis; article; B cell lymphoma; BHRF1 gene; bindi gene; binding affinity; cancer inhibition; cancer survival; codon; controlled study; crystal structure; Epstein Barr virus; Escherichia coli; fluorescence activated cell sorting; gel permeation chromatography; hydrophobicity; ligand binding; micelle; mouse; mutagenesis; nonhuman; polymerase chain reaction; priority journal; protein binding; protein expression; protein motif; protein protein interaction; protein purification; protein secondary structure; protein stability; side chain grafting; site directed mutagenesis; target cell; tumor volume; virus gene; yeast; apoptosis; Article; cell survival; computer aided design; Epstein Barr virus; Epstein Barr virus infection; human; human cell; laboratory; protein function; protein interaction; protein structure; tumor growth; xenograft, Amino Acid Sequence; Animals; Apoptosis; Computational Biology; Crystallography, X-Ray; Epstein-Barr Virus Infections; Herpesvirus 4, Human; Heterografts; Humans; Lymphoma, B-Cell; Mice; Models, Molecular; Molecular Sequence Data; Neoplasm Transplantation; Protein Engineering; Proteins; Sequence Alignment; Viral Proteins

International Standard Serial Number (ISSN)

0092-8674

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 Elsevier, All rights reserved.

Publication Date

01 Jun 2014

PubMed ID

24949974

Share

 
COinS