Copper-Doped Borosilicate Bioactive Glass Scaffolds with Improved Angiogenic and Osteogenic Capacity for Repairing Osseous Defects
Abstract
There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0 wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3 wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8 weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Recommended Citation
S. Zhao et al., "Copper-Doped Borosilicate Bioactive Glass Scaffolds with Improved Angiogenic and Osteogenic Capacity for Repairing Osseous Defects," Acta Biomaterialia, vol. 14, pp. 185 - 196, Elsevier Ltd, Mar 2015.
The definitive version is available at https://doi.org/10.1016/j.actbio.2014.12.010
Department(s)
Materials Science and Engineering
International Standard Serial Number (ISSN)
1742-7061
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 Elsevier Ltd, All rights reserved.
Publication Date
01 Mar 2015
Comments
This article is corrected by Erratum: Copper-Doped Borosilicate Bioactive Glass Scaffolds with Improved Angiogenic and Osteogenic Capacity for Repairing Osseous Defects.