Abstract
Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as particles. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the laser parameters of newly deposited layers on the microstructure and mechanical properties of the previously deposited layers in order to characterize these effects to inform proper parameter selection in future DLD fabrication. Varying the parameters showed to produce different effects on the micro- structure morphology and property values, leading to some tempering and aging of the steels. The microstructure of the top layer was equiaxed, while the near substrate region was fine dendritic. Typically, both the travel speed and laser power significantly affect the microstructure and hardness. Using the commercial ABAQUS/CAE software, a thermo- mechanical 3D finite element model was developed. This work presents a 3D heat transfer model that considers the continuous addition of powder particles in front of a moving laser beam using ABAQUS/CAE software. The model assumes the deposit geometry appropriate to each experimental condition and calculates the temperature distribution, cooling rates and re-melted layer depth, which can affect the final microstructure. Model simulations were qualitatively compared with experimental results acquired in situ using a K-Type thermocouple.
Recommended Citation
T. A. Amine et al., "An Investigation of the Effect of Direct Metal Deposition Parameters on the Characteristics of the Deposited Layers," Case Studies in Thermal Engineering, vol. 3, pp. 21 - 34, Elsevier Ltd, Jul 2014.
The definitive version is available at https://doi.org/10.1016/j.csite.2014.02.002
Department(s)
Materials Science and Engineering
Second Department
Mechanical and Aerospace Engineering
Keywords and Phrases
3D finite element modeling; Direct metal deposition; Microstructure; Stainless steel 316L; Computer simulation; Deposition; Fabrication; Finite element method; Mechanical properties; Powder metals; Spot welding; Thermocouples; Direct laser deposition; Experimental conditions; Final microstructures; K-type thermocouples; Microstructure and mechanical properties
International Standard Serial Number (ISSN)
2214-157X
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2014 Elsevier Ltd, All rights reserved.
Publication Date
01 Jul 2014