Synthesis, Characterization and Non-Isothermal Decomposition Kinetic of a New Galactochloralose Based Polymer

Abstract

A glycopolymer, poly(3-O-methacroyl-5,6-O-isopropylidene-1,2-O-(S)- trichloroethylidene-α-d-galactofuranose) (PMIPTEG) was synthesized from the sugar-carrying methacrylate monomer, 3-O-methacroyl-5,6-O-isopropylidene-1, 2-O-(S)-trichloroethylidene-α-d-galactofuranose (MIPTEG) via conventional free radical polymerization with AIBN in 1,4-dioxane. The structures of glycomonomer and their polymers were confirmed by UV-vis, FT-IR, 1H NMR, 13C NMR, GPC, TG/DTG-DTA, DSC, and SEM techniques. SEM images showed that PMIPTEG had a straight-chain length structure. On the other hand, the thermal decomposition kinetics of polymer were investigated by means of thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. The apparent activation energies for thermal decomposition of the PMIPTEG were calculated using the Kissinger, Kim-Park, Tang, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman methods and were found to be 100.15, 104.40, 102.0, 102.2, 103.2 and 99.6 kJ/mol, respectively. The most likely process mechanism related to the thermal decomposition stage of PMIPTEG was determined to be a Dn deceleration type in terms of master plots results.

Department(s)

Materials Science and Engineering

Keywords and Phrases

Apparent activation energy; Chloralose; Conventional free-radical polymerization; Decomposition kinetics; Methacrylate monomers; Non-isothermal decomposition; Thermal decomposition kinetics; Activation energy; Free radical polymerization; Nuclear magnetic resonance spectroscopy; Polymer blends; Reaction kinetics; Thermoanalysis; Thermogravimetric analysis; Polymers; chloral hydrate; chloralose; drug derivative; galactoside; methacrylic acid; polymethacrylic acid derivative; Carbohydrate based polymer; Decomposition kinetic; synthesis; temperature; thermal analysis, Carbohydrate based polymer; Chloralose; Methacrylate; Thermal analysis, Chemistry Techniques; Synthetic; Chloral Hydrate; Galactosides; Polymers; Polymethacrylic Acids; Temperature

International Standard Serial Number (ISSN)

0144-8617

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 Elsevier, All rights reserved.

Publication Date

01 Jan 2014

Share

 
COinS