Solid Dielectric Transmission Lines for Pulsed Power
Abstract
This paper documents recent work developing solid dielectric transmission lines for sub-microsecond, 100 kV class compact pulsed power systems. Polymer-ceramic nanocomposite materials have demonstrated sub-microsecond discharge capability in parallel plate capacitors and transmission lines [1, 2]. With a dielectric constant of approximately 50, the propagation velocity is 2.5 cm/ns, necessitating lines of several meters length to achieve > 100 ns pulse lengths. By folding the line in a fashion analogous to ceramic multilayer capacitors, the physical length of the line can be significantly shorter than the electrical length. We present the results of an experimental effort to develop a folded transmission line using a polymer-ceramic nanocomposite dielectric. The pulse length was somewhat shorter than expected based on a simple calculation using the geometry and the dielectric constant. Fully 3-D electromagnetic calculations were used to examine the role of the edges in curtailing the pulse length. Dielectric breakdown in this device occurred below the electric field threshold demonstrated in the prior work [1]. Improvements in the large scale fabrication of TiO2 beginning with nanoscale grains have opened the possibility for producing single layer high voltage devices. Given a dielectric constant approaching 140, transmission lines using nano-TiO2 can be considerably shorter than with other materials. Relatively thick, flat sheets of TiO2 have been fabricated for testing up to 50 kV. Several transmission lines, employing a serpentine electrode geometry, have been manufactured and tested. Testing up to several 10's of kV has confirmed the operation of the lines according to the design. As expected, the triple point between the TiO2, electrode, and insulating medium has proven difficult to manage for high voltage operation. Several techniques to mitigate the effects of the triple point, including resistive grading at the edges of the electrodes, are discussed. Fully 3-D electromagnetic modeling is used to examine the effects of electrode geometry and composition on the performance of the lines.
Recommended Citation
M. T. Domonkos and S. L. Heidger and D. J. Brown and T. C. Cavazos and A. D. Devoe and F. Dogan and D. G. Gale and J. P. O'Loughlin and J. V. Parker and D. R. Sandoval and K. M. Slenes and W. E. Sommars and J. J. Watrous, "Solid Dielectric Transmission Lines for Pulsed Power," Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference (2012, San Diego, CA), pp. 174 - 179, Institute of Electrical and Electronics Engineers (IEEE), Jun 2012.
The definitive version is available at https://doi.org/10.1109/IPMHVC.2012.6518707
Meeting Name
IEEE International Power Modulator and High Voltage Conference (2012: Jun. 3-7, San Diego, CA)
Department(s)
Materials Science and Engineering
Keywords and Phrases
Ceramic multilayer capacitors; Electromagnetic calculations; Electromagnetic modeling; Large-scale fabrication; Parallel plate capacitors; Polymer-ceramic nanocomposite; Pulsed-power; Solid dielectric; Electric discharges; Electric fields; Electric lines; Electricity; Geometry; Nanocomposites; Serpentine; Titanium dioxide; Dielectric materials
International Standard Book Number (ISBN)
978-1467312233
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2012 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jun 2012