Effect of Nickel, Copper and Chromium on Stacking Fault Energy in FCC Iron

Abstract

In this study, ab-initio density functional methods are used to examine the effects of nickel, copper, and chromium substitutions on unstable and intrinsic stacking fault energies in FCC iron. The aim of this study was to determine if these alloy additions favor the formation and stability of e-martensite. Nickel and copper additions are shown to increase intrinsic stacking fault energy whereas chromium is shown to have a parabolic relationship. Effects on the unstable stacking fault energy are also examined indicating chromium decreases the unstable stacking fault energy whereas Ni and Cu have a complex effect and are dependent upon proximity to the stacking fault.

Meeting Name

AISTech 2014 Iron and Steel Technology Conference (2014: May 5-8, Indianapolis, IN)

Department(s)

Materials Science and Engineering

Second Department

Physics

Keywords and Phrases

Chromium; Chromium Compounds; Copper; Density Functional Theory; Iron; Iron Compounds; Nickel; Ab Initio; Advanced High Strength Steel; Alloy Additions; Complex Effects; Copper Additions; Density-functional Methods; Intrinsic Stacking Fault; Stacking Fault Energies; Stainless Steel

International Standard Book Number (ISBN)

978-1935117421

International Standard Serial Number (ISSN)

1551-6997

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 Association for Iron and Steel Technology, AISTECH, All rights reserved.

Publication Date

08 May 2014

This document is currently not available here.

Share

 
COinS