Abstract

We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength.

Department(s)

Materials Science and Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

International Standard Serial Number (ISSN)

2045-2322

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 Nature Publishing Group, All rights reserved.

Publication Date

01 Jan 2016

Share

 
COinS